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The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions
is exactly solved by establishing a precise mapping relationship with the corresponding zero-field �symmetric�
eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction
exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as
continuously varying critical exponents. The changes in critical exponents are in accordance with the weak
universality hypothesis in spite of a peculiar singular behavior that emerges at a quantum critical point of the
infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-
Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant
changes in both critical temperatures and critical exponents upon varying the strength of the exchange aniso-
tropy in the Heisenberg interaction.
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I. INTRODUCTION

Over the last six decades, exactly solvable models of in-
teracting many-body systems have attracted considerable at-
tention due to their uncoverable role in a fundamental under-
standing of order-disorder phenomena �1–3�. In particular,
exactly solvable quantum spin models are currently at the
forefront of theoretical research interest as they often exhibit
a peculiar interplay between quantum fluctuations and coop-
erativity �4–6�. Despite extensive studies, however, phase
transitions and critical phenomena of rigorously solved quan-
tum spin models still belong to the most challenging unre-
solved issues to deal with, since quantum fluctuations usually
prefer the lack of spontaneous order. Indeed, there are only
few exactly solved quantum spin models that simultaneously
exhibit both spontaneous long-range order and obvious quan-
tum manifestations.

It has been recently demonstrated that the spontaneous
order, which is accompanied with obvious quantum manifes-
tations, might be an inherent feature of the hybrid Ising-
Heisenberg planar models �7� whose lattice sites are in part
occupied by the Ising spins and partly by the Heisenberg
spins �8–17�. Note that all aforementioned Ising-Heisenberg
planar models have exactly been solved with the help of
suitable algebraic transformations such as the decoration-
iteration �18� or the star-triangle �19� transformation, which
establish a precise mapping equivalence with the correspond-
ing spin-1/2 Ising model. It is worthwhile to recall, more-
over, that the decoration-iteration and star-triangle mapping
transformations were substantially generalized by Fisher �20�
�see also for details Ref. �21��, who first pointed out that in
principle arbitrary quantum-mechanical system coupled to
two or three outer Ising spins can be replaced via appropriate

algebraic transformation by the equivalent expression con-
taining pairwise spin-spin interactions between the outer
Ising spins. In such a way, one effectively establishes a pre-
cise mapping relationship that connects the exact solution of
some original model �which might describe a rather complex
quantum-mechanical system� with the exact solution of the
corresponding spin-1/2 Ising model, which is generally
known for many planar lattices of different topologies
�1,3,21–24�.

On the contrary, there does not exist a general algebraic
transformation for any quantum-mechanical system coupled
to four or more outer Ising spins if one considers pairwise
interactions between the outer Ising spins only �20�. Rojas et
al. �25� recently found exact evidence that it is nevertheless
possible to include multispin interactions between the outer
Ising spins into the algebraic transformation in order to en-
sure its general validity. Thus, the algebraic transformation
with effective pair and quartic interactions is, for instance,
required when searching for an exact treatment of the
quantum-mechanical system coupled to four outer Ising
spins in the absence of the external field. The spin-1/2 Ising
model with pair and quartic interactions is however nothing
but the alternative definition of the general eight-vertex
model �26,27�, which becomes exactly tractable by imposing
a special additional constraint to its vertex energies �Boltz-
mann’s weights� known either as Baxter’s zero-field �sym-
metric� condition �1,28,29� or the free-fermion condition of
Fan and Wu �30,31�. Bearing all this in mind, one could
intuitively expect that there might exist a certain class of
exactly solvable quantum-mechanical spin models for which
the appropriate algebraic transformation yields a precise
mapping correspondence to the eight-vertex model generally
satisfying Baxter’s zero-field condition �1,28,29�. The main
goal of the present work is to show that the spin-1/2 Ising-
Heisenberg model with the pair XYZ Heisenberg interaction
and the quartic Ising interactions falls into this class of fully
exactly soluble models.*jozef.strecka@upjs.sk, jozkos@pobox.sk
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The importance of exact results to be obtained for the
Ising-Heisenberg model with the pair and quartic interactions
should be viewed in more respects. First, it is well known
that the quartic interaction basically affects magnetic proper-
ties of several insulating copper compounds such as
La2CuO4 �32–37� �undoped parent compound for high-Tc cu-
prates�, SrCu2O3 �35�, La6Ca8Cu24O41 �38�, and
La4Sr10Cu24O41 �39�. Even though it would be rather striking
coincidence if some real magnetic material would obey very
specific topological requirements of the model under inves-
tigation, it is quite reasonable to suspect that our exact results
might at least shed light on some important aspects of the
critical behavior of real magnetic materials. Second, our
model system represents a rare example of the exactly solved
lattice-statistical model, which contradicts the standard uni-
versality hypothesis in that its critical exponents vary con-
tinuously with the interaction parameters over the full range
of possible values of the critical exponents. Third, the ex-
actly soluble vertex models have found over the last few
decades manifold applications in seemingly diverse research
areas. Exact solutions of vertexlike models essentially tackle
the problem of the residual entropy of two-dimensional ice
�40,41�, the Slater model of hydrogen-bonded ferroelectrics
�42–44�, the integrable quantum spin models such as the
quantum Heisenberg chain �43,45–50�, the ice-type solid-on-
solid �SOS� model �48,49,51,52�, the problem of counting
domino tilings �31,53–56�, the three- and four-coloring prob-
lems of the square and hexagonal lattices �1,41,57–59�, etc.

The rest of this paper is organized as follows. In Sec. II,
we will provide the detailed description of the hybrid Ising-
Heisenberg model, and then, basic ideas of the exact map-
ping to the zero-field eight-vertex model will be explained.
This is followed by the presentation of the most interesting
results for the ground-state and finite-temperature phase dia-
grams, which are supplemented by a detailed analysis of a
rather strange nonuniversal behavior of critical exponents.
Finally, some concluding remarks are given in Sec. IV.

II. ISING-HEISENBERG MODEL AND ITS EQUIVALENCE
TO THE ZERO-FIELD EIGHT-VERTEX MODEL

Consider a two-dimensional lattice of edge-sharing octa-
hedrons, each of them with four Ising spins �=1 /2 in a basal
plane and two Heisenberg spins S=1 /2 in apical positions,
as schematically depicted in Fig. 1. Suppose furthermore that
each edge of the octahedron, which connects two Ising spins,
is a common edge of two adjacent octahedrons �thin solid
lines in Fig. 1�. The ensemble of all Ising spins then forms a
square lattice, which has a couple of the Heisenberg spins
above and below a center of each elementary square face
formed by four Ising spins. Let both apical Heisenberg spins
interact together via the pairwise XYZ Heisenberg interac-
tion, while are also assumed to be engaged in two different
quartic Ising interactions with two Ising spins from opposite
corners of a square face �see Fig. 1�. The total Hamiltonian
can be for convenience written as a sum over all elementary

unit cells �octahedrons� Ĥ=�pĤp, where each octahedron-

cluster Hamiltonian Ĥp contains one pair interaction between
the apical Heisenberg spins and two quartic interactions be-

tween the Heisenberg spins and their four Ising neighbors,

Ĥp = − �JxŜp1
x Ŝp2

x + JyŜp1
y Ŝp2

y + JzŜp1
z Ŝp2

z � − J1Ŝp1
z Ŝp2

z �̂p1
z �̂p3

z

− J2Ŝp1
z Ŝp2

z �̂p2
z �̂p4

z . �1�

Above, the interaction parameters Jx, Jy, and Jz denote spa-
tial components of the anisotropic XYZ interaction between
the Heisenberg spins, while the interaction parameters J1 and
J2 label two quartic Ising interactions between both apical
Heisenberg spins and two Ising spins from opposite corners
of a square face along two different diagonal directions �see
Fig. 1�.

It is of principal importance that the cluster Hamiltonians
of two different octahedrons commute with each other, i.e.,

�Ĥi ,Ĥ j�=0, which immediately allows a partial factorization
of the total partition function into a product of cluster parti-
tion functions,

Z = �
���

�
p

Trp exp�− �Ĥp� . �2�

The summation ���� to emerge in Eq. �2� is carried out over
all possible configurations of the Ising spins, the symbol Trp
denotes a trace over spin degrees of freedom of the Heisen-
berg spin pair from the pth octahedron, and �=1 /kBT, where
kB is Boltzmann’s constant and T is the absolute temperature.
After performing the relevant trace over spin degrees of free-
dom of the Heisenberg spins, the partition function of the
Ising-Heisenberg model can be rewritten into the form

Z = �
���

�
p

�p��p1
z ,�p2

z ,�p3
z ,�p4

z � . �3�

Apparently, the effective Boltzmann’s factor �p assigned to
the pth octahedron now explicitly depends just on four Ising
spins �p1, �p2, �p3, and �p4 from its basal plane through the
relation

Jx , J Jy z,

J1

J2

Sp2

Sp1

�p1
�p3

�p2

�p4

FIG. 1. The elementary unit cell of the spin-1/2 Ising-
Heisenberg model. Full �empty� circles denote lattice positions of
the Heisenberg �Ising� spins, thick solid line represents the pairwise
XYZ Heisenberg interaction between the apical Heisenberg spins,
and both types of broken lines connect spins involved in the quartic
Ising interactions. Thin solid lines connecting four Ising spins are
guides for eyes only.
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�p�a,b,c,d� = 2 exp�Kz + K1ac + K2bd�cosh�Kx − Ky�

+ 2 exp�− Kz − K1ac − K2bd�cosh�Kx + Ky� ,

�4�

where we have introduced a new unified notation for the
coupling constants K�=�J� /4 ��=x ,y ,z ,1 ,2� in order to
write Boltzmann’s factor �4� in a more abbreviated and el-
egant form.

At this stage, the model under investigation can be rather
straightforwardly mapped to the eight-vertex model on its
dual square lattice. As a matter of fact, the product emerging
in Eq. �3� can alternatively be performed over all elementary
squares of the Ising spins forming a square lattice and Bolt-
zmann’s factor �4� is invariant under the reversal of all four
Ising spin variables. In this respect, there are at the utmost
eight different spin arrangements that have different energies
�Boltzmann’s weights� and these can readily be related to
Boltzmann’s weights of the eight-vertex model on a dual
square lattice by the following procedure. If and only if the
Ising spins located at adjacent corners of a square face are
aligned opposite to each other, then solid lines are drawn on
edges of a dual square lattice; otherwise they are drawn as
broken lines. This is actually one of many alternative defini-
tions of the eight-vertex model, since an even number of
solid �broken� lines is always incident to each vertex of a
dual square lattice. The diagrammatic representation of eight
possible spin arrangements and their corresponding line cov-
erings is shown in Fig. 2. It can be easily understood that
each of eight possible line arrangements around a vertex of
the dual lattice corresponds to two spin configurations, with
one obtained from the other by reversing all four Ising spins
located at corners of an elementary square face. The hybrid
Ising-Heisenberg model thus turns out to be equivalent to the
eight-vertex model. With regard to this equivalence, the par-
tition function of the Ising-Heisenberg model can be ex-
pressed in terms of the partition function of the eight-vertex
model on a square lattice,

Z�T,Jx,Jy,Jz,J1,J2� = 2Z8-vertex��1,�2, . . . ,�8� . �5�

The factor of 2 in the above equation comes from the two-
to-one mapping between the spin and vertex configurations
�two spin configurations always correspond to one vertex
configuration�.

Boltzmann’s weights, which correspond to eight possible
line coverings of the eight-vertex model shown in Fig. 2, can
directly be obtained from Eq. �4� by substituting a respective
spin configuration of the Ising spins,

�1 = �2 = 2 exp	Kz +
K1 + K2

4

cosh�Kx − Ky�

+ 2 exp	− Kz −
K1 + K2

4

cosh�Kx + Ky� , �6�

�3 = �4 = 2 exp	Kz −
K1 + K2

4

cosh�Kx − Ky�

+ 2 exp	− Kz +
K1 + K2

4

cosh�Kx + Ky� , �7�

�5 = �6 = 2 exp	Kz −
K1 − K2

4

cosh�Kx − Ky�

+ 2 exp	− Kz +
K1 − K2

4

cosh�Kx + Ky� , �8�

�7 = �8 = 2 exp	Kz +
K1 − K2

4

cosh�Kx − Ky�

+ 2 exp	− Kz −
K1 − K2

4

cosh�Kx + Ky� . �9�

It is quite obvious from the set of Eqs. �6�–�9� that Boltz-
mann’s weights are pairwise equal to each other and there are
merely four independent Boltzmann’s weights. The spin-1/2
Ising-Heisenberg model defined through Hamiltonian �1� has
been accordingly mapped to the eight-vertex model, which
quite generally satisfies Baxter’s zero-field condition �1
=�2, �3=�4, �5=�6, and �7=�8 �1,28,29�. Hence, it fol-
lows that the exact solution of the spin-1/2 Ising-Heisenberg
model with the pair XYZ Heisenberg interaction and the
quartic Ising interactions can be extracted from Baxter’s ex-
act solution of the corresponding zero-field eight-vertex
model �1,28,29�. For instance, the critical condition of the
zero-field eight-vertex model,

�1 + �3 + �5 + �7 = 2 max��1,�3,�5,�7� , �10�

directly determines phase transitions of the spin-1/2 Ising-
Heisenberg model if effective Boltzmann’s weights �6�–�9�
are substituted into this critical condition. It is also worthy to
mention that the critical exponents, which characterize the
phase transitions of the zero-field eight-vertex model,
continuously change with the parameter �
=2 arctan��5�7 /�1�3�1/2 by following the formulas

� = �� = 2 −
�

�
, � =

�

16�
, � = �� =

�

2�
,

	 = 	� =
7�

8�
, 
 = 15, � =

1

4
. �11�

Note that set of relations �11� will also govern changes in the
critical exponents of the Ising-Heisenberg model provided
that effective Boltzmann’s weights �6�–�9� are used for the
calculation of the parameter �.

To provide an alternative proof of the exact mapping
equivalence between the zero-field eight-vertex model and

+ +

+ +

�1 � � � � � � �2 3 4 5 6 7 8

+
_

_
+

+
_

+
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_
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+
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_
+

� � � � � � � 	
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+

FIG. 2. Eight possible Ising spin configurations and their rela-
tion to line coverings of the corresponding eight-vertex model on a
dual square lattice. The sign “�” denotes the spin state �z= �1 /2.
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the spin-1/2 Ising-Heisenberg model, one can utilize the fact
that the eight-vertex model on a square lattice can also be
reformulated as two spin-1/2 Ising square lattices coupled
together by means of the quartic interaction �26,27�. In ac-
cordance with this statement, effective Boltzmann’s factor
�4� could be eventually replaced via appropriate algebraic
transformation of the form

�p��p1
z ,�p2

z ,�p3
z ,�p4

z �

= 2 exp�Kz + K1�p1
z �p3

z + K2�p2
z �p4

z �cosh�Kx − Ky�

+ 2 exp�− Kz − K1�p1
z �p3

z − K2�p2
z �p4

z �cosh�Kx + Ky�

= R0 exp�R1�p1
z �p3

z + R2�p2
z �p4

z + R4�p1
z �p2

z �p3
z �p4

z � ,

�12�

where the mapping parameters R1 and R2 denote the effective
pair interactions in two different Ising square lattices and the
mapping parameter R4 determines the effective quartic inter-
action that couples together both Ising square lattices. Alge-
braic transformation �12� must satisfy the “self-consistency”
condition, which means that it must hold independently of
spin states of four Ising spins involved therein. The self-
consistency condition thus provides a simple connection be-
tween effective Boltzmann’s weights �6�–�9� of the Ising-
Heisenberg model and the coupling parameters R1, R2, and
R4 of the zero-field eight-vertex model in the Ising represen-
tation,

R0 = ��1�3�5�7�1/4, �13�

R1 = ln	�1�7

�3�5

 , �14�

R2 = ln	�1�5

�3�7

 , �15�

R4 = 4 ln	�1�3

�5�7

 . �16�

This is actually an alternative proof of the exact mapping
equivalence between the spin-1/2 Ising-Heisenberg model
and the zero-field eight-vertex model on a square lattice.

The usefulness of the latter equivalence consists in that
another three useful observations can be made from it. First,
it is quite evident from Eqs. �14� and �15� that the effective
pair interactions of both Ising square lattices become equal to
each other �R1=R2� by imposing the condition �5=�7,
which is equivalent to K1=K2 �or J1=J2�. This means that a
difference in two diagonal quartic Ising interactions merely
causes a difference in the effective pair interactions of the
Ising square lattices. Second, the quartic interaction R4 that
couples together two Ising square lattices vanishes only if at
least one from either of quartic Ising interaction K1 or K2 �J1
or J2� equals zero provided that all interactions are finite.
Other particular cases with the zero effective quartic interac-
tion R4 are the Ising and XY limit of the Heisenberg pair
interaction. One actually obtains R4→0, R1→ �K1, and R2
→ �K2 in the Ising limit Kz→ �
, whereas R4→0, R1
→−K1, and R2→−K2 is obtained in the XY limit Kx , Ky

→ �
. Apart from these rather trivial cases from the Ising
universality class, one may expect that the spin-1/2 Ising-
Heisenberg model will generally exhibit continuously vary-
ing critical exponents satisfying the weak universality hy-
pothesis �60� due to the nonzero effective quartic interaction
R4. Third, the spin-1/2 Ising-Heisenberg model defined
through Hamiltonian �1� can in turn be refined by the terms
depending on the Ising spin pairs �p1

z �p3
z and �p2

z �p4
z without

disturbing the exact mapping equivalence to the zero-field
eight-vertex model. As a matter of fact, an inclusion of two
diagonal pair interactions −J1��p1

z �p3
z and −J2��p2

z �p4
z , and the

quartic interaction −J4��p1
z �p2

z �p3
z �p4

z into Hamiltonian �1�
merely adds the respective coupling constant as an auxiliary
constant factor into the definition of mapping parameters
�14�–�16�, respectively. It is noteworthy, however, that the
model system is mapped to the more general and yet un-
solved eight-vertex model by introducing the nearest-
neighbor pair interactions −J1���p1

z �p2
z +�p3

z �p4
z � and

−J2���p2
z �p3

z +�p1
z �p4

z � into Hamiltonian �1�. Even though
there does not exist a general exact solution of the corre-
sponding eight-vertex model, it is now well established that
the critical exponents still vary continuously with the inter-
action parameters even for this more complex but surely
more realistic model �61–70�.

III. RESULTS AND DISCUSSION

Before proceeding to a discussion of the most interesting
results, it is worthy to notice that our further analysis will be
restricted just to a particular example of the spin-1/2 Ising-
Heisenberg model with the identical quartic Ising interac-
tions J1=J2=J4 and the more symmetric XXZ Heisenberg
interaction with Jx=Jy =J� and Jz=J in order to avoid over
parametrization of the model under investigation. Further-
more, it is also convenient to normalize all interaction pa-
rameters with respect to the z component of the XXZ Heisen-
berg interaction, which will henceforth serve as the energy
unit. Accordingly, the dimensionless temperature will be set
to kBT /J, the relative strength of the quartic Ising interac-
tions will be proportional to the ratio J4 /J, and, finally, the
parameter �=Jx /J=Jy /J will measure the relative strength of
the exchange anisotropy in the XXZ Heisenberg interaction.

Let us perform first a comprehensive analysis of the
ground state. It is worthwhile to remark that the ground-state
spin arrangement will be thoroughly determined by the
lowest-energy eigenstate that enters into the greatest Boltz-
mann’s weight, since each Boltzmann’s weight involves four
eigenenergies that correspond to possible eigenstates of the
Heisenberg spin pair at a given configuration of the Ising
spins. �Remember that the Ising spin configurations are un-
ambiguously assigned to Boltzmann’s weights according to a
scheme depicted in Fig. 2.� It might be therefore quite useful
to quote initially explicit expressions for the effective Boltz-
mann’s weights of simplified version of the spin-1/2 Ising-
Heisenberg model,

�1 = 2 exp���2J + J4�
8

� + 2 exp�−
��2J + J4�

8
�cosh	�J�

2

 ,
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�3 = 2 exp���2J − J4�
8

� + 2 exp�−
��2J − J4�

8
�cosh	�J�

2

 ,

�5 = �7 = 2 exp	�J

4

 + 2 exp	−

�J

4

cosh	�J�

2

 .

�17�

It directly follows from set of equations �17� that the greatest
Boltzmann’s weight is either �1 or �3. Moreover, another
useful observation is that both these Boltzmann’s weights are
simply connected through the relation �1��J4�=�3��J4�
and one may further assume the positive quartic Ising inter-
action J4�0 without loss of generality. This simplification is
a direct consequence of the affirmation that the investigated
model system is invariant under the transformations J4
→−J4 and ��p1

z ,�p2
z ,�p3

z ,�p4
z �→ ��p1

z ,�p2
z ,−�p3

z ,−�p4
z �. The

ground-state phase diagram must be therefore symmetric
with respect to the J4=0 axis and the respective spin arrange-
ments to emerge in a sector J4�0 can be obtained from its
symmetry-related counterpart in a sector J4�0 by a mere
interchange of the Ising spin configurations inherent to Bolt-
zmann’s weights �1 and �3.

For better orientation, we will distinguish our subsequent
analysis of the spin-1/2 Ising-Heisenberg models with the
ferromagnetic �J�0� and antiferromagnetic �J�0� Heisen-
berg pair interactions, respectively. In the former case, the
greatest Boltzmann’s weight is �1 for ��1 and �3 for �
�1, under the assumptions T=0 and J4�0 �note that the
reverse conditions hold for the case J4�0�. The global
ground-state phase diagram of the spin-1/2 Ising-Heisenberg
model with the ferromagnetic Heisenberg interaction is dis-
played in Fig. 3. Clearly, the ground-state diagram comprises
four different phases,


I� = �
p


+ , � , + , ���p

+ ,+�Sp

, �18�


II� = �
p


+ , � ,− , ���p

1
�2

�
+ ,− � + 
− ,+��Sp
, �19�


III� = �
p


+ , � ,− , ���p

+ ,+�Sp

, �20�


IV� = �
p


+ , � , + , ���p

1
�2

�
+ ,− � + 
− ,+��Sp
, �21�

which are written in the form of the product over the respec-
tive lowest-energy eigenstate of Hamiltonian �1� that is of
course identical for each elementary unit cell �octahedron�.
Note furthermore that the first �second� ket vector after the
product symbol determines spin states of the Ising �Heisen-
berg� spins and another equivalent representations of the
eigenstates can be obtained from eigenvectors �18�–�21� un-
der the reversal of all Ising and/or Heisenberg spins. Phases

I� and 
III� are consequently eightfold degenerate as spin
reversals of the Ising and Heisenberg spins can be performed
independently of each other, whereas phases 
II� and 
IV� are
just fourfold degenerate as the spin reversal of the Heisen-
berg spins does not in fact lead to a new eigenstate.

It is worthwhile to remark that another two obvious fea-
tures directly follow from Fig. 3 and Eqs. �18�–�21�. The
Heisenberg spins are ferromagnetically aligned with respect
to each other in phases 
I� and 
III� where ��1, while they
reside at the entangled spin state �
+,−�+ 
−,+�� /�2 in phases

II� and 
IV� where ��1. In addition, there appears a perfect
ferromagnetic or antiferromagnetic alignment on a square
lattice of the Ising spins in phases 
I� and 
IV� in contrast to
two feasible superantiferromagnetic orderings that occur in
phases 
II� and 
III�, where a perfect ferromagnetic arrange-
ment of the Ising spins in a horizontal direction is accompa-
nied with a perfect antiferromagnetic arrangement in a verti-
cal direction, or vice versa. The overall understanding of the
nature of the afore-described spin arrangements readily fol-
lows from the energy spectrum of the spin-1/2 XXZ Heisen-
berg dimer. Namely, the lowest-energy eigenstate of the spin-
1/2 XXZ Heisenberg dimer is the ferromagnetic state 
+,+� if
one considers the easy-axis exchange anisotropies ��1,
while the entangled spin state �
+,−�+ 
−,+�� /�2 becomes
the lowest-energy eigenstate for the easy-plane exchange
anisotropies ��1. The relevant spin arrangement of the
Ising spins is subsequently driven by the effort to minimize
the energy gain arising from the quartic Ising interactions.
Thus, there must be either zero or two spins with opposite
orientation with respect to the others among the four spins
�two Ising and two Heisenberg� involved in the positive
quartic Ising interaction J4�0, whereas there must be just
one unaligned spin among them whenever the negative quar-
tic Ising interaction J4�0 is assumed.

Surprisingly, the ground-state analysis becomes much
simpler for the spin-1/2 Ising-Heisenberg model with the an-
tiferromagnetic �J�0� Heisenberg interaction. It is quite ap-
parent from set of equations �17� that the greatest Boltz-
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FIG. 3. Ground-state phase diagram of the spin-1/2 Ising-
Heisenberg model with the ferromagnetic interaction J�0 in the
J4 /J-� plane. Each sector of the phase diagram contains typical
spin configurations of the Ising and Heisenberg spins, which form
an elementary octahedron. The sign “�” denotes spin states �z

= �1 /2 and Sz= �1 /2 of the Ising and Heisenberg spins, respec-
tively. Broken lines, which connect both apical Heisenberg spins in
phases 
II� and 
IV�, label the entangled spin state �
+,−�+ 
−,
+�� /�2.
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mann’s weight is always �3 ��1� if one considers the positive
�negative� quartic Ising interaction. Owing to this fact, the
overall ground-state phase diagram comprises just two dif-
ferent phases,


V� = �
p


+ , � ,− , ���p

1
�2

�
+ ,− � − 
− ,+��Sp
, �22�


VI� = �
p


+ , � , + , ���p

1
�2

�
+ ,− � − 
− ,+��Sp
, �23�

whereas phase 
V� is the ground state for J4�0 and phase

VI� is that for J4�0. It should be stressed that both
fourfold-degenerate phases 
V� and 
VI� quite closely re-
semble phases 
II� and 
IV� described previously by the
analysis of the ferromagnetic model. As a matter of fact, the
only difference between phases 
V� and 
II� �or 
VI� and 
IV��
consists of a quantum entanglement of the Heisenberg spin
pairs, which is described by the antisymmetric singlet-dimer
wave function �
+,−�− 
−,+�� /�2 in the antiferromagnetic
model with J�0 and its symmetric counterpart �
+,−�+ 
−,
+�� /�2 in the ferromagnetic model with J�0.

Now, let us turn our attention to a detailed analysis of the
finite-temperature phase diagrams. It is worthwhile to recall
that phase-transition lines of our simplified version of the
spin-1/2 Ising-Heisenberg model can be straightforwardly
obtained from the critical condition of the corresponding
zero-field eight-vertex model by substituting effective Boltz-
mann’s weights �17� into Eq. �10�. It should be also men-
tioned that the greatest Boltzmann’s weight might be either
�1 or �3. In the former case ��1��3�, the critical condition
reads

cosh	�cJ

2
�
 = exp	�cJ

2

 sinh	�cJ4

8

 − 1

sinh	�cJ4

8

 + 1

, �24�

while in the latter case ��1��3� the critical condition be-
comes

cosh	�cJ

2
�
 = exp	�cJ

2

 sinh	�cJ4

8

 + 1

sinh	�cJ4

8

 − 1

, �25�

where �c=1 /kBTc and Tc is the critical temperature. Interest-
ingly, both critical conditions �24� and �25� can be joined
together to yield a single critical condition,

sinh	�c
J4

8


 =

exp	�cJ

2

 + cosh	�cJ

2
�


�exp	�cJ

2

 − cosh	�cJ

2
�
� , �26�

which is valid in the whole region of the parameter space.
The absolute value of the quartic Ising interaction appears in
Eq. �26� as a direct consequence of the symmetry relation
between Boltzmann’s weights, �1��J4�=�3��J4�, which are

mutually interchangeable under the transformation J4→−J4.
Accordingly, the critical temperature of the spin-1/2 Ising-
Heisenberg model must be independent of the sign of the
quartic Ising interaction and one may still consider positive
values of the quartic Ising interaction J4�0 without loss of
generality. Henceforth, we will therefore restrict ourselves
just to an analysis of the critical lines of phases 
I�, 
II�, and

V� emerging for the positive quartic Ising interaction J4
�0. It should be nevertheless mentioned that the critical
lines for phases 
III�, 
IV�, and 
VI� appearing in the case
J4�0 are formally identical with the displayed critical lines
for phases 
I�, 
II�, and 
V�, respectively.

Let us construct first the finite-temperature phase diagram
of the spin-1/2 Ising-Heisenberg model with the ferromag-
netic Heisenberg interaction. The greatest Boltzmann’s
weight for the ferromagnetic model with J�0 is �1 if and
only if

sgn�J4��exp	�J

2

 − cosh	�J

2
�
� � 0. �27�

Otherwise �3 becomes the greatest Boltzmann’s weight.
Consequently, critical condition �24� determines phase tran-
sitions just if inequality �27� holds, while critical condition
�25� is valid in the rest of the parameter space. Phase-
transition lines in the form of critical temperature versus ex-
change anisotropy dependences are drawn in Fig. 4 for three
different relative strengths of the quartic Ising interaction. As
one can see, the critical temperature generally exhibits a re-
markable dependence on the exchange anisotropy with two
marked wings of critical lines that merge together at the
ground-state boundary �=1 between phases 
I� and 
II�. It
should be mentioned that the left wing of displayed phase
boundaries is a solution of critical condition �24�, while the
right wing is a solution of critical condition �25�. In this
regard, the left wings deliminate critical lines of phase 
I�,
whereas the right wings represent critical lines of phase 
II�.
The critical temperature of phase 
I� at first steadily de-
creases as the exchange anisotropy � is raised from zero,

FIG. 4. Solid lines depict the critical temperature as a function
of the exchange anisotropy for the spin-1/2 Ising-Heisenberg model
with the ferromagnetic Heisenberg interaction J�0 at three differ-
ent relative strengths of the quartic Ising interaction. The left wing
of critical lines determines phase boundaries for phases 
I� �J4

�0� or 
III� �J4�0�, while the right wing determines phase bound-
aries for phases 
II� �J4�0� or 
IV� �J4�0�. The broken line shows
the disorder solution obtained by solving Eq. �28�.
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then it exhibits an interesting re-entrant behavior before it
finally tends to zero in the limit �→1. It is noticeable that
the re-entrant phase transitions are observable just in a rela-
tively narrow interval of the exchange anisotropies �
� �1,�max�, whose upper bound �max is the greater the
greater is the relative strength of the quartic Ising interaction.
Contrary to this, the right wing of critical lines, which allo-
cate phase transitions of phase 
II�, characterizes a monoto-
nous increase in the critical temperature with the exchange
anisotropy. An origin of the observed re-entrant transitions
obviously lies in two times higher degeneracy of phase 
I�
compared to phase 
II�. Accordingly, two successive re-
entrant transitions from the paramagnetic phase to phase 
I�
and back may take place in the parameter region, where
phase 
II� constitutes the ground state and phase 
I� has
slightly higher energy, on account of the much larger entropy
gain of phase 
I� obtained upon the temperature increase. It is
worthy to mention that similar re-entrant phase transitions
have been found in a variety of frustrated Ising models,
which have been exactly solved by establishing a precise
mapping relationship with the corresponding free-fermion
vertex models �2,71–76�. To bring a deeper insight into the
re-entrant phenomenon, it is also worthwhile to inspect the
disorder solution to be derived from the condition

�1 = �3 ⇔ exp	�DJ

2

 = cosh	�DJ�

2

 , �28�

where �D=1 /kBTD and TD is the disorder temperature. The
disorder solution entails an effective reduction in the dimen-
sionality and ensures a disordered nature of the spin system
on the particular subvariety of the parameter space given by
Eq. �28� �2,73–79�. It is quite apparent from Fig. 4 that the
disorder �broken� line calculated from condition �28� has a
finite positive tangent, which can be approximated in a rela-
tively wide temperature range by the linear dependence of
the disorder temperature TD on the exchange anisotropy �
through the relation kBTD /J= ��−1� / ln 4.

For the sake of comparison, the critical temperatures of
the spin-1/2 Ising-Heisenberg model with both ferromagnetic
�J�0� and antiferromagnetic �J�0� Heisenberg pair inter-
actions are depicted in Fig. 5 for three different relative

strengths of the quartic Ising interaction. The critical lines of
the ferromagnetic model are displayed as solid lines, while
the critical lines of the antiferromagnetic model are drawn as
broken lines. The displayed critical lines of the antiferromag-
netic model in fact determine critical temperatures of phase

V�, which is the only possible ground state when J�0 and
J4�0. Evidently, the antiferromagnetic model generally ex-
hibits a rather small variation in the critical temperature upon
varying the exchange anisotropy in comparison with the
marked two-wing dependence of the critical temperature that
shows the ferromagnetic model. Another interesting fact to
observe here, and also derived from Eq. �26�, is that the
critical temperatures of the ferromagnetic and antiferromag-
netic models become equal to each other in two limiting
cases �→0 and �→
. From this perspective, the most ob-
vious difference between the critical temperatures of the fer-
romagnetic and antiferromagnetic Ising-Heisenberg models
appears in the vicinity of the isotropic limit �=1, where the
critical temperature of the ferromagnetic model asymptoti-
cally vanishes due to the zero-temperature phase transition
between phases 
I� and 
II�.

At this point, let us make certain comments on changes in
critical exponents along the critical lines. For this purpose,
typical changes in the critical exponent � along the phase-
transition line of the spin-1/2 Ising-Heisenberg model with
the ferromagnetic Heisenberg interaction and 
J4
 /J=1 are
depicted in Fig. 6. Solid lines display the variation in the
critical temperature with the exchange anisotropy, which are
scaled with respect to left axes, while broken lines scaled
with respect to right axes show the relevant changes in the
critical exponent �. As could be expected, the critical expo-
nent � varies continuously along the line of critical points
according to relations �11�, which connect changes in the
critical exponents to respective changes in the interaction
parameters through the parameter �. It turns out that the
investigated model system generally exhibits rather smooth
continuous phase transitions, since the order of phase transi-
tion is proportional to r=2−� �see, for instance, pp. 16 and
17 of Ref. �1�� and the critical exponent � lies within the
range �� �−
 ,0�. The most striking finding is, however, that

FIG. 5. The critical temperature as a function of the exchange
anisotropy for the spin-1/2 Ising-Heisenberg model with the ferro-
magnetic �solid lines� or antiferromagnetic �broken lines� Heisen-
berg pair interaction at three different relative strengths of the quar-
tic Ising interaction.

FIG. 6. The changes in the critical exponent � along the critical
line of the spin-1/2 Ising-Heisenberg model with the ferromagnetic
interaction J�0 and 
J4
 /J=1.0. Solid lines, which are scaled with
respect to left axes, show the critical temperature as a function of
the exchange anisotropy. Broken lines, which are scaled with re-
spect to right axes, display the relevant changes in the critical ex-
ponent −� in a semilogarithmic scale. �b� illustrates a detail of the
parameter region, where both re-entrant phase transitions as well as
a quantum critical point occur.
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the critical exponent � exhibits a peculiar singularity in the
vicinity of the ground-state boundary between phases 
I� and

II� where �→−
. Owing to this fact, the zero-temperature
phase transition between phases 
I� and 
II� emerging at �
=1 is of infinite order. Hence, this special critical point ac-
tually represents a remarkable quantum critical point. It is
also worthy to notice that the displayed variations in the
critical exponent −� quite closely resemble dependences of
the other critical exponents �, 	, and � due to a similar
mathematical structure of relations �11�.

Furthermore, the changes in the critical exponent � along
the critical line of the spin-1/2 Ising-Heisenberg model with
the antiferromagnetic Heisenberg interaction are shown in
Fig. 7. In this particular case, the changes in the critical
exponent � are restricted to a rather narrow finite interval
even though a negative value of the critical exponent � still
implies the continuous nature of the phase transitions r�2.
It is also quite interesting to notice that the critical exponent
� monotonically increases from its smallest value at �=0
before it gradually tends toward �→0 in the limit �→
.
Altogether, the critical lines of both ferromagnetic and anti-
ferromagnetic models turned out to be the lines of continu-
ous phase transitions of the order r�2, but the ferromagnetic
model generally exhibits much more pronounced changes in
the critical exponents including a rather strange quantum
critical point of the infinite order with diverging critical ex-
ponents.

Before concluding, let us make few remarks on a critical
behavior of another particular case of the spin-1/2 Ising-
Heisenberg model with Jx=Jy =J� and Jz=J and the quartic
Ising interactions J1=−J2=J4�. This particular case differs
from the previous one just in a nature of the quartic Ising
interactions, which are of equal relative strengths but of dif-
ferent signs. In this respect, the positive quartic interaction
will prefer spin alignments with either zero or two opposite
spins among the four spins �two Ising and two Heisenberg�
involved therein, while the negative quartic interaction will
favor spin alignments with just one unaligned spin among
them. Interestingly, the phase diagrams of this particular case
will be essentially identical to the ones discussed previously,
since there is a simple relation between the effective Boltz-
mann’s weights of both particular cases. As a matter of fact,

it directly follows from Eqs. �6�–�9� that the effective Boltz-
mann’s weights of the model with two nonuniform quartic
interactions J1=−J2=J4� can be expressed through Boltz-
mann’s weights �17� of the uniform case as �1�=�3�=�5, �5�
=�3, and �7�=�1. It is quite apparent that the roles of differ-
ent Boltzmann’s weights are merely interchanged and the
greatest Boltzmann’s weight is now either �7� or �5�. How-
ever, this fact does not affect the ground-state and finite-
temperature phase diagrams because critical condition �10� is
quite symmetric with respect to all four Boltzmann’s weights
involved therein. Hence, it follows that the zero- and finite-
temperature phase diagrams shown in Figs. 3–5 remain valid
and one should only perform a respective change in the Ising
spin configurations from �1→�7� and �3→�5�, respectively.
The ground-state phase diagram of the ferromagnetic �J
�0� model with the nonuniform quartic interactions, which
is shown in Fig. 3, thus constitute the phases


I�� = �
p


+ , � , + , ���p

+ ,+�Sp

, �29�


II�� = �
p


� , + , � ,+��p

1
�2

�
+ ,− � + 
− ,+��Sp
, �30�


III�� = �
p


� , + , � ,+��p

+ ,+�Sp

, �31�


VI�� = �
p


+ , � , + , ���p

1
�2

�
+ ,− � + 
− ,+��Sp
. �32�

while the ground state of the antiferromagnetic �J�0� model
is either 
V�� for J4��0 or 
VI�� for J4��0,


V�� = �
p


� , + , � ,+��p

1
�2

�
+ ,− � − 
− ,+��Sp
, �33�


VI�� = �
p


+ , � , + , ���p

1
�2

�
+ ,− � − 
− ,+��Sp
. �34�

Despite similarity of the ground-state and finite-temperature
phase diagrams, the critical exponents of the particular case
with the nonuniform quartic interactions are fundamentally
different from the ones of the former particular case with two
identical quartic interactions. Namely, the change in the criti-
cal exponents depends through set of equations �11� on the
parameter �, which is not symmetric with respect to all four
Boltzmann’s weights. Therefore, it might be quite interesting
to ascertain how the critical exponents change by assuming
two quartic interactions of different sign �nature�. The varia-
tions in the critical exponent � along the critical line of the
ferromagnetic model �J�0� are displayed in Fig. 8 for the
particular case with 
J4�
 /J=1. It is quite obvious from this
figure that the critical exponent � exhibits an outstanding
dependence with the global maximum �max=1 emerging at
�=1. As a result, the zero-temperature phase transition be-
tween phases 
I�� and 
II�� �or 
III�� and 
IV��� is in fact a
discontinuous first-order phase transition �r=1� unlike the
afore-described continuous phase transition of the infinite or-
der between the phases 
I� and 
II� �or 
III� and 
IV��. More-

FIG. 7. The changes in the critical exponent � along the critical
line of the spin-1/2 Ising-Heisenberg model with the antiferromag-
netic interaction J�0 and 
J4
 / 
J
=1.0. The solid line, which is
scaled with respect to the left axis, shows the critical temperature as
a function of the exchange anisotropy. The broken line, which is
scaled with respect to the right axis, displays the relevant changes in
the critical exponent � along this critical line.

STREČKA, ČANOVÁ, AND MINAMI PHYSICAL REVIEW E 79, 051103 �2009�

051103-8



over, the critical exponent � evidently acquires positive
values from the interval �� �0,1�, which indicates discon-
tinuous nature of the phase transitions �r�2� along the
whole critical line of the ferromagnetic model with the non-
uniform quartic interactions.

For completeness, we depict in Fig. 9 the critical expo-
nent � of the antiferromagnetic model �J�0� with the same
relative strength of nonuniform quartic interactions 
J4�
 / 
J

=1. It can be clearly seen from this figure that the critical
exponent � monotonically decreases with the increase in the
exchange anisotropy even although it always remains posi-
tive. It is noteworthy that the precisely opposite trends were
observed in the former particular case with the uniform quar-
tic interactions and there are only two common features of
both particular cases with the antiferromagnetic pair interac-
tion J�0. First, the changes in the critical exponent � are
restricted just to a rather narrow finite interval and, second,
the same asymptotic value �=0 is achieved in the limit �
→
. Altogether, it could be concluded that the Ising-
Heisenberg model with the nonuniform quartic interactions
generally exhibits a discontinuous phase transitions of the
order r�2 no matter whether the ferromagnetic or antiferro-

magnetic nature of the Heisenberg pair interaction J is as-
sumed.

IV. CONCLUSIONS

In the present work, we have furnished proof of an exact
mapping equivalence between the spin-1/2 Ising-Heisenberg
model on a two-dimensional lattice of edge-sharing octahe-
drons and the zero-field eight-vertex model on a square lat-
tice. In accordance with this exact mapping correspondence,
the critical behavior of the model under investigation closely
resembles the outstanding critical behavior of the zero-field
eight-vertex model and Ashkin-Teller model �1�, which ex-
hibit critical lines with continuously varying critical expo-
nents satisfying the weak universality hypothesis �60�. It is
worthwhile to remark, moreover, that the similar precise
mapping relationship between the spin-1/2 Ising-Heisenberg
model on a square-hexagon lattice and the zero-field eight-
vertex model was recently found by Valverde �80� et al. in a
restricted region of the interaction parameters. Unlike this
case, the exact mapping correspondence with the zero-field
eight-vertex model holds in our case quite generally; i.e., it is
not restricted to any particular subvariety of the parameter
space.

Exact results for the spin-1/2 Ising-Heisenberg model
with the pair XYZ Heisenberg and quartic Ising interactions
imply that the model with the antiferromagnetic pair interac-
tion surprisingly exhibits less significant changes in both
critical temperatures and critical exponents than the model
with the ferromagnetic pair interaction. The most interesting
finding to emerge from the present study is however exact
evidence of a quantum critical point of the infinite order,
which characterizes the peculiar singular behavior of the
critical exponents in the close vicinity of the isotropic limit
of the Heisenberg pair interaction. In addition, it was shown
that the critical exponents vary continuously over the entire
range of allowed values by changing the exchange aniso-
tropy in the Heisenberg pair interaction and the relative
strength of the quartic interaction. From this point of view,
the investigated Ising-Heisenberg model represents a rare ex-
ample of the exactly solved quantum spin model with such
an unusual weak universal critical behavior.

Next, it is worth noticing that the Ising-Heisenberg model
with the pair Heisenberg and quadratic Ising interactions can
also be interpreted as an interesting example of the exactly
solved quantum dimer system with rather complicated even-
body interactions between dimers. This means that the sys-
tem of quantum dimers in some specific fluctuations or fields
is also equivalent to the exactly solved zero-field eight-
vertex model, which contradicts the standard universality hy-
pothesis in that its critical exponents vary continuously with
the interaction parameters. In addition, the quartic and other
even-body interactions turned out to play an important role
in determining magnetic properties of several insulating
magnetic materials �32–39�, which makes the presented ex-
act results more interesting also from the experimental point
of view. Even though it would be rather striking coincidence
if some real magnetic material would obey very specific to-
pological requirements of the model under investigation, it is

FIG. 8. The changes in the critical exponent � along the critical
line of the spin-1/2 Ising-Heisenberg model with the ferromagnetic
interaction J�0 and the relative strength of the nonuniform quartic
interactions 
J4�
 /J=1.0. Solid lines, which are scaled with respect to
left axes, show the critical temperature as a function of the ex-
change anisotropy. Broken lines, which are scaled with respect to
right axes, display the relevant changes in the critical exponent �.

FIG. 9. The changes in the critical exponent � along the critical
line of the spin-1/2 Ising-Heisenberg model with the antiferromag-
netic interaction J�0 and the relative strength of the nonuniform
quartic interactions 
J4�
 / 
J
=1.0. The solid line, which is scaled with
respect to the left axis, shows the critical temperature as a function
of the exchange anisotropy. The broken line, which is scaled with
respect to the right axis, displays the relevant changes in the critical
exponent �.
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quite reasonable to suspect that our exact results might at
least shed light on some important aspects of the critical
behavior of real magnetic materials.

Last but not the least, it should be mentioned that it could
be quite interesting to explore also temperature variations of
some basic thermodynamic quantities �such as entropy and
specific heat� that might exhibit a rather spectacular thermal
dependences especially near the zero-temperature phase tran-
sitions. Furthermore, several interesting extensions and gen-
eralizations of the present version of the Ising-Heisenberg
model come into question besides the most obvious ones
mentioned at the end of Sec. II. For instance, it is possible to
extend the present Ising-Heisenberg model by including
higher-order triplet, quintuplet, and sextuplet interactions be-

tween the Ising and Heisenberg spins, or to solve exactly the
analogous Ising-Heisenberg model with the Heisenberg spins
S�1 /2 that accounts for other interaction terms such as the
single-ion anisotropy and the biquadratic interaction. In this
direction will continue our next work.
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